Excited state dynamics in solid and monomeric tetracene: The roles of superradiance and exciton fission.

نویسندگان

  • Jonathan J Burdett
  • Astrid M Müller
  • David Gosztola
  • Christopher J Bardeen
چکیده

The excited state dynamics in polycrystalline thin films of tetracene are studied using both picosecond fluorescence and femtosecond transient absorption. The solid-state results are compared with those obtained for monomeric tetracene in dilute solution. The room temperature solid-state fluorescence decays are consistent with earlier models that take into account exciton-exciton annihilation and exciton fission but with a reduced delayed fluorescence lifetime, ranging from 20-100 ns as opposed to 2 μs or longer in single crystals. Femtosecond transient absorption measurements on the monomer in solution reveal several excited state absorption features that overlap the ground state bleach and stimulated emission signals. On longer timescales, the initially excited singlet state completely decays due to intersystem crossing, and the triplet state absorption superimposed on the bleach is observed, consistent with earlier flash photolysis experiments. In the solid-state, the transient absorption dynamics are dominated by a negative stimulated emission signal, decaying with a 9.2 ps time constant. The enhanced bleach and stimulated emission signals in the solid are attributed to a superradiant, delocalized S(1) state that rapidly fissions into triplets and can also generate a second superradiant state, most likely a crystal defect, that dominates the picosecond luminescence signal. The enhanced absorption strength of the S(0)→S(1) transition, along with the partially oriented nature of our polycrystalline films, obscures the weaker T(1)→T(N) absorption features. To confirm that triplets are the major species produced by relaxation of the initially excited state, the delayed fluorescence and ground state bleach recovery are compared. Their identical decays are consistent with triplet diffusion and recombination at trapping or defect sites. The results show that complications like exciton delocalization, the presence of luminescent defect sites, and crystallite orientation must be taken into account to fully describe the photophysical behavior of tetracene thin films. The experimental results are consistent with the traditional picture that tetracene's photodynamics are dominated by exciton fission and triplet recombination, but suggest that fission occurs within 10 ps, much more rapidly than previously believed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for exciton fission and fusion in a covalently linked tetracene dimer

A photophysical study of the covalently linked tetracene dimer 1,4-bis(tetracen-5-yl)benzene is presented. While the dimer’s steady state spectroscopy is similar to that of monomeric tetracene, it also exhibits a long-lived fluorescence signal in solution and solid polyethylene films, which is absent in the monomer. The behavior of this long-lived component as a function of temperature and oxyg...

متن کامل

Exciton fission and fusion in bis(tetracene) molecules with different covalent linker structures.

Bichromophoric molecules can support two spatially separated excited states simultaneously and thus provide novel pathways for electronic state relaxation. Exciton fission, where absorption of a single photon leads to two triplet states, is a potentially useful example of such a pathway. In this paper, a detailed study of exciton fission in three novel phenylene-linked bis(tetracene) molecules ...

متن کامل

Femtosecond Laser Spectroscopy and Singlet Fission

Singlet exciton fission or singlet fission (SF) is a process in which a singlet excited molecule, usually in a densely packed organic solid or in a polymer, shares its energy with a neighboring molecule in its electronic ground state, both molecules forming a pair of triplet states in a spin allowed process. SF was first proposed in 1965 to explain the delayed fluorescence in anthracene crystal...

متن کامل

Excited-State Dynamics of Diindenoperylene in Liquid Solution and in Solid Films

The excited-state dynamics of diindenoperylene (DIP) are investigated in dilute solution and in a solid film at room temperature using picosecond photoluminescence and femtosecond transient absorption measurements. In solution, DIP undergoes a rapid (0.89 ns) internal conversion back to its ground state, with no detectable formation of triplet or other long-lived states. In the solid state, mul...

متن کامل

The dependence of singlet exciton relaxation on excitation density and temperature in polycrystalline tetracene thin films: kinetic evidence for a dark intermediate state and implications for singlet fission.

The excited state dynamics of polycrystalline tetracene films are studied using femtosecond transient absorption in combination with picosecond fluorescence, continuing work reported in an earlier paper [J. J. Burdett, A. M. Muller, D. Gosztola, and C. J. Bardeen, J. Chem. Phys. 133, 144506 (2010)]. A study of the intensity dependence of the singlet state decay is conducted to understand the or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 133 14  شماره 

صفحات  -

تاریخ انتشار 2010